5,743 research outputs found

    Minimal Coverability Set for Petri Nets: Karp and Miller Algorithm with Pruning

    No full text
    This paper presents the Monotone-Pruning algorithm (MP) for computing the minimal coverability set of Petri nets. The original Karp and Miller algorithm (K&M) unfolds the reachability graph of a Petri net and uses acceleration on branches to ensure termination. The MP algorithm improves the K&M algorithm by adding pruning between branches of the K&M tree. This idea was first introduced in the Minimal Coverability Tree algorithm (MCT), however it was recently shown to be incomplete. The MP algorithm can be viewed as the MCT algorithm with a slightly more aggressive pruning strategy which ensures completeness. Experimental results show that this algorithm is a strong improvement over the K&M algorithm as it dramatically reduces the exploration tree

    Quasi-exactly Solvable Lie Superalgebras of Differential Operators

    Get PDF
    In this paper, we study Lie superalgebras of 2×22\times 2 matrix-valued first-order differential operators on the complex line. We first completely classify all such superalgebras of finite dimension. Among the finite-dimensional superalgebras whose odd subspace is nontrivial, we find those admitting a finite-dimensional invariant module of smooth vector-valued functions, and classify all the resulting finite-dimensional modules. The latter Lie superalgebras and their modules are the building blocks in the construction of QES quantum mechanical models for spin 1/2 particles in one dimension.Comment: LaTeX2e using the amstex and amssymb packages, 24 page

    Quasi-Exactly Solvable N-Body Spin Hamiltonians with Short-Range Interaction Potentials

    Get PDF
    We review some recent results on quasi-exactly solvable spin models presenting near-neighbors interactions. These systems can be understood as cyclic generalizations of the usual Calogero-Sutherland models. A nontrivial modification of the exchange operator formalism is used to obtain several infinite families of eigenfunctions of these models in closed form.Comment: This is a contribution to the Proc. of workshop on Geometric Aspects of Integrable Systems (July 17-19, 2006; Coimbra, Portugal), published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    A Haldane-Shastry spin chain of BC_N type in a constant magnetic field

    Get PDF
    We compute the spectrum of the trigonometric Sutherland spin model of BC_N type in the presence of a constant magnetic field. Using Polychronakos's freezing trick, we derive an exact formula for the partition function of its associated Haldane-Shastry spin chain.Comment: LaTeX, 13 page

    The exactly solvable spin Sutherland model of B_N type and its related spin chain

    Get PDF
    We compute the spectrum of the su(m) spin Sutherland model of B_N type, including the exact degeneracy of all energy levels. By studying the large coupling constant limit of this model and of its scalar counterpart, we evaluate the partition function of their associated spin chain of Haldane-Shastry type in closed form. With the help of the formula for the partition function thus obtained we study the chain's spectrum, showing that it cannot be obtained as a limiting case of its BC_N counterpart. The structure of the partition function also suggests that the spectrum of the Haldane-Shastry spin chain of B_N type is equivalent to that of a suitable vertex model, as is the case for its A_{N-1} counterpart, and that the density of its eigenvalues is normally distributed when the number of sites N tends to infinity. We analyze this last conjecture numerically using again the explicit formula for the partition function, and check its validity for several values of N and m.Comment: Typeset in LaTeX (24 pages, 4 figures). arXiv admin note: text overlap with arXiv:0909.296

    Quasi-Exactly Solvable Potentials on the Line and Orthogonal Polynomials

    Get PDF
    In this paper we show that a quasi-exactly solvable (normalizable or periodic) one-dimensional Hamiltonian satisfying very mild conditions defines a family of weakly orthogonal polynomials which obey a three-term recursion relation. In particular, we prove that (normalizable) exactly-solvable one-dimensional systems are characterized by the fact that their associated polynomials satisfy a two-term recursion relation. We study the properties of the family of weakly orthogonal polynomials defined by an arbitrary one-dimensional quasi-exactly solvable Hamiltonian, showing in particular that its associated Stieltjes measure is supported on a finite set. From this we deduce that the corresponding moment problem is determined, and that the kk-th moment grows like the kk-th power of a constant as kk tends to infinity. We also show that the moments satisfy a constant coefficient linear difference equation, and that this property actually characterizes weakly orthogonal polynomial systems.Comment: 22 pages, plain TeX. Please typeset only the file orth.te

    The Berry-Tabor conjecture for spin chains of Haldane-Shastry type

    Get PDF
    According to a long-standing conjecture of Berry and Tabor, the distribution of the spacings between consecutive levels of a "generic'' integrable model should follow Poisson's law. In contrast, the spacings distribution of chaotic systems typically follows Wigner's law. An important exception to the Berry-Tabor conjecture is the integrable spin chain with long-range interactions introduced by Haldane and Shastry in 1988, whose spacings distribution is neither Poissonian nor of Wigner's type. In this letter we argue that the cumulative spacings distribution of this chain should follow the "square root of a logarithm'' law recently proposed by us as a characteristic feature of all spin chains of Haldane-Shastry type. We also show in detail that the latter law is valid for the rational counterpart of the Haldane-Shastry chain introduced by Polychronakos.Comment: LaTeX with revtex4, 6 pages, 6 figure
    corecore